Journal of Organometallic Chemistry, 96 (1975) C61–C62 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

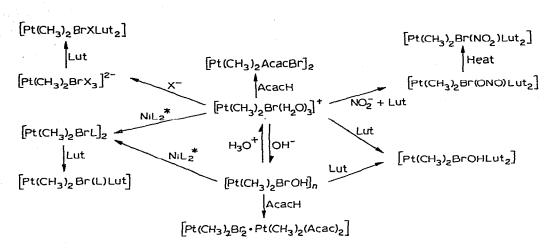
Preliminary communication

PREPARATION OF MONOBROMODIMETHYLPLATINUM(IV) COMPOUNDS

J.R. HALL^{*} and G.A. SWILE

Chemistry Department, University of Queensland, St Lucia, Brisbane 4067 (Australia) (Received June 30th, 1975)

Summary


Reaction of $[Pt(CH_3)_2 Br_2]_n$ with aqueous Ag^+ yields an acidic solution apparently containing $[Pt(CH_3)_2 Br(H_2 O)_3]^+$, and neutralization of this solution produces $[Pt(CH_3)_2 BrOH]_n$; both species react with a variety of ligands to produce monobromodimethylplatinum(IV) compounds.

Reaction of $[Pt(CH_3)_2 Br_2]_n [1,2]$ with a one mol ratio of aqueous Ag^* produces a single water-soluble species according to ¹H NMR. This species is presumably $[Pt(CH_3)_2 Br(H_2 O)_3]^*$ but the solutions are slightly acidic, indicating the presence of Pt—OH bonds. On neutralization of the solution with NaOH a yellow solid analysing for Pt(CH_3)_2 BrOH precipitates from solution. Both $[Pt(CH_3)_2 Br(H_2 O)_3]^*$ in aqueous solution and $[Pt(CH_3)_2 - BrOH]_n$ which is soluble in methanol and acetone, prove to be useful starting materials for the preparation of a variety of monobromodimethyl-platinum(IV) compounds as shown in Scheme 1.

Reaction of $[Pt(CH_3)_2 BrOH]_n$ with 3,5-lutidine or addition of 3,5lutidine to the solution of $[Pt(CH_3)_2 Br(H_2O)_3]^+$ gives $[Pt(CH_3)_2 BrOHLut_2]$ which is the first example of a terminal OH group in methylplatinum(IV) systems. Treatment of $[Pt(CH_3)_2 Br(H_2O)_3]^+$ with aqueous solutions of NaX (X = I, Br, Cl and SCN) gives solutions apparently containing $[Pt(CH_3)_2 - BrX_3]^{2-}$ since addition of lutidine to these solutions precipitates complexes of formulae $Pt(CH_3)_2 BrXLut_2$ all of which according to ¹H NMR contain Lut groups *trans* to CH₃. Reaction with NaNO₂ produces the nitrito species $[Pt(CH_3)_2 Br(ONO)Lut_2]$ as identified by IR (ν (N=O) 1511 cm⁻¹, ν (N=O) 960 cm⁻¹). This compound converts to the nitro isomer on heating (ν_{asym} -(N=O) 1420 cm⁻¹, ν_{sym} (N=O) 1332, 1322 cm⁻¹.

Reaction of $[Pt(CH_3)_2 Br(H_2 O)_3]^*$ with acetylacetone yields a solid analysing for $Pt(CH_3)_2$ AcacBr and containing O-bonded acetylacetonate

^{*}To whom correspondence should be addressed.

*L = Sal=N-R or thio- β -diketonate

SCHEME 1

groups, while $[Pt(CH_3)_2 BrOH]_n$ dissolves in boiling acetylacetone to yield the isomeric species $[Pt(CH_3)_2 Br_2 \cdot Pt(CH_3)_2(Acac)_2]$, which contains both O- and C-bonded Acac groups as previously reported [3]. Reactions of either $[Pt(CH_3)_2 Br(H_2 O)_3]^+$ or $[Pt(CH_3)_2 BrOH]_n$ with nickel complexes NiL₂ where L is a salicylaldiminate or a thio- β -diketonate produce compounds of formulae $[Pt(CH_3)_2 BrL]_2$ which react with lutidine to produce $[Pt(CH_3)_2 Br(L)Lut]$.

The above compounds are presently being investigated in detail by ¹H NMR and IR spectra.

References

1 J.R. Hall and G.A. Swile, Austral. J. Chem., 24 (1971) 423.

2 J.R. Hall and G.A. Swile, J. Organometal. Chem., 56 (1973) 419.

3 J.R. Hall and G.A. Swile, J. Organometal. Chem., 67 (1974) 455.

C62